

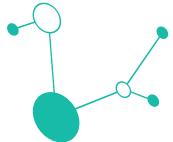
DIGIVITALITY

Country-level Action plan on public financing of digital Healthcare solutions

Poland

ACCELERATION OF DIGITAL SOLUTIONS IN POLAND

Summary


- The DIGIVITALITY project aims to accelerate the adoption of digital health solutions within the Medical University by developing the necessary organizational, regulatory and technological frameworks that support innovation in telemedicine, remote monitoring and digital therapeutics.
- Digital solutions can significantly improve patient care, enhance the education of healthcare students, reduce the burden on clinical personnel, and facilitate more efficient collaboration between university clinics, affiliated hospitals, and external partners.
- Currently, the implementation of digital health tools is limited by fragmented regulations, absence of standardized processes, insufficient digital competencies among healthcare professionals and students, and a lack of consistent financial models for scaling validated solutions.
- This Action Plan proposes a set of achievable, low-barrier interventions (*quick wins*), followed by medium-term strategic actions to establish the Medical University as a national leader in digital transformation in healthcare.

Why are we bringing up the topic of acceleration of digital solutions?:

Telemedicine solutions and digital therapeutics represent an effective tool for alleviating the burden of patients on healthcare personnel capacity and improving healthcare accessibility for patients. Current challenges in the form of growth in patients from high-risk groups, including elderly people and people with chronic diseases, will continue to increase with population aging.

Digital health solutions, including telemedicine, mobile diagnostics, remote monitoring, and AI-supported tools, are increasingly essential for addressing challenges such as:

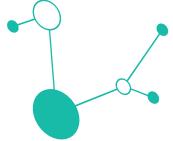
- growing demand for healthcare services with limited personnel capacity,
- increasing numbers of patients with chronic diseases,
- need for continuous monitoring and preventive care,
- the rising importance of data-driven medical education,
- changing expectations of patients and students regarding digital accessibility.

Although digital health technologies are rapidly evolving, their adoption inside academic medical centers remains inconsistent. Without coordinated support, promising solutions often remain in the pilot phase and fail to reach clinical integration or reimbursement readiness.

Current State:

At present, the integration of digital health solutions at the Medical University is characterized by a fragmented and uncoordinated landscape. While several departments and university clinics have independently initiated projects involving telemedicine, digital diagnostics, mobile applications, or remote monitoring, these activities remain largely isolated and pilot-oriented. Most digital tools are introduced as part of research initiatives or small-scale educational experiments rather than being embedded into formal clinical workflows or institutional strategies.

The University does not yet operate under a unified digital health policy or framework that would guide decision-making, define standards, or ensure compliance with legal and technical requirements. As a result, each clinical department or research group approaches the implementation of digital solutions differently, often navigating regulatory obligations such as ethical approval, GDPR compliance and medical device classification without centralized support. This leads to duplicated efforts, inconsistent quality and delays in piloting innovative solutions.


Technical integration also presents a challenge. Existing IT systems across university clinics vary in their level of digital maturity and few are prepared for seamless integration with remote monitoring platforms, telemedicine modules, or data-heavy applications powered by AI. In addition, many tools developed or tested within university research projects are not designed with long-term operational deployment in mind, creating further barriers to scalability.

Digital competencies among staff and students remain uneven. While many younger students and clinicians are confident users of digital platforms, others express limited familiarity with emerging tools, cybersecurity protocols, or the practical implementation of telemedicine in clinical practice. This variability impacts the quality of education and slows the adoption of innovations within university clinics.

Financial constraints also contribute to the fragmented state. Digital health pilots are often supported through short-term grants, external partnerships or department-level budgets. Without sustainable funding pathways or institutional investment mechanisms, successful pilots frequently fail to progress toward wider implementation, regardless of clinical or educational benefits.

Finally, communication about ongoing digital initiatives is limited. There is no central repository for information on digital health projects, evaluation results or available support services. This lack of visibility reduces opportunities for collaboration internally and diminishes the University's ability to position itself as a national leader in digital transformation.

In summary, although there is substantial interest and early activity in digital health across the Medical University, the absence of coordinated structures, standardized processes, dedicated

support services and stable funding frameworks significantly restricts the potential for full-scale implementation and long-term impact.

Barriers and Proposed Action Steps:

- **Barrier:** There is no unified guidance on how digital applications, remote monitoring platforms, or AI-based tools can be evaluated, approved, piloted, or integrated into university clinical practice.
 - Action:** Develop a University Digital Health Regulatory Framework that defines requirements for: ethical approval, data protection compliance (GDPR), technical integration with clinical systems, evaluation standards and quality criteria, clinical risk classification and reporting.
 - Responsibility:** University Legal Department, University Ethics Committee, IT Security Office, DIGIVITALITY coordination team.
- **Barrier:** Healthcare professionals and students have unequal levels of knowledge regarding telemedicine, remote monitoring, cybersecurity, and digital diagnostics.
 - Action:** Introduce a Digital Skills Improvement Program consisting of: e-learning courses, skills workshops (telemedicine operation, digital diagnostics, AI tools), certification modules for clinicians and students, training for administrative and technical staff.
 - Responsibility:** Medical Education Center, Faculty Deans, Human Resources, DIGIVITALITY training team.
- **Barrier:** There is no central source of information for students, clinicians, and external partners about ongoing projects, opportunities, or requirements.
 - Action:** Create an Interactive Digital Health Information Portal including: project catalog, implementation process map, training resources, contact directory of support teams, application forms, best-practice examples. **Responsibility:** Pharmacy and Drug Policy Section at the Ministry of Health of the Slovak republic.
 - Responsibility:** University Communications Department, DIGIVITALITY team.
- **Barrier:** Digital health pilots often lack sustained financing beyond initial research grants.
 - Action:** Develop a Sustainable Funding Model, including: internal micro-grant programs, public-private partnership models, collaboration with health insurers on reimbursement-readiness projects.
 - Responsibility:** Rector's Office, Financial Department, Grants Office, DIGIVITALITY finance team.