

ReCo

LOCAL/REGIONAL RESTORATION PLANS

THAYATAL - PODYJÍ NATIONAL PARKS PART SPECIES (D.3.2.2)

Version 3
11 2025

Authors:

Tomáš Dvořák, Julian Haider,

Editors:

Manuela Londoño Jiménez, Stefan Fuchs

Publisher:

ReCo Project Consortium (www.interreg-central.eu/projects/reco)

Publication developed as a part of the project “ReCo - Restoring degraded eco-systems along the Green Belt to improve and enhance biodiversity and ecological connectivity” (www.interreg-central.eu/projects/reco), supported by the Interreg CENTRAL EUROPE Programme with co-financing from the European Regional Development Fund.

Responsibility for the content of the publication lies solely with the Authors and can in no case be treated as a reflection of the position of the European Union.

The publication is free. Reproduction and quoting are allowed, provided that the source is acknowledged. However, the use or reproduction of photos and other materials for which the Publisher is not entitled to copyright requires the direct consent of the owner of the rights.

Inhaltsverzeichnis

INTRODUCTION	4
SUMMARY	7
1. Focus	8
1.1. Introduction and objectives	8
1.2. Initial Situation and Regional Significance.....	9
2. The European Wildcat as a Flagship and Target Species.....	10
3. Preceeding restoration activities	11
4. Fields of Action and Packages of Measures.....	11
4.1. Habitat Management and Development of Coppice Forests	11
4.2. Restoration of Aquatic Habitats	12
4.3. Improving Ecological Connectivity	13
4.4. Monitoring and Genetic Management.....	13
4.5. Environmental Education and Stakeholder Involvement	14
5. Areas of Interest for Restoration.....	14
5.1. Core Habitats in Thayatal and Podyjí National Parks	14
5.2. Stepping Stone Biotopes and Connection Corridors	14
5.3. Expansion Areas with High Potential	15
6. Implementation Strategy	16
6.1. Timeline and Milestones	16
6.2. Coordination and Governance	17
6.3. Financing and Use of Funds	17
7. Monitoring	17
8. Conclusion and Recommendations	19

INTRODUCTION

Under the Interreg ReCo project (*Restoring Degraded Ecosystems along the Green Belt to Improve and Enhance Biodiversity and Ecological Connectivity*), species-oriented restoration measures were developed in two pilot regions. The European bison *Bos bonasus* in north-western Poland and the European wildcat *Felis silvestris* across the Austrian-Czech border were the focus of these efforts, which included reintroduction, telemetry monitoring, habitat management, and other measures to ensure genetic diversity and species mobility. These efforts aimed to enhance the presence of the endangered species in their respective pilot regions and increase their resilience to environmental change and human-derived pressures within the Central European Green Belt.

Throughout and following the implementation phase, innovative restoration measures were carried out using a community-based approach involving local stakeholders. These measures were evaluated in terms of execution, outcomes, and the achievement of goals. The resulting strategies and lessons learned regarding methods, monitoring approaches, and community involvement are documented in the *ReCo project Practitioners' Guide, Restoration to promote NATURA 2000 (priority) species (D.2.4.2)*, which directly informed the development of the present Local and Regional Restoration Plans for the European bison in Ińska Lakeland (West Pomerania) and the European wildcat in Thayatal and Podyjí National Parks. Each plan focuses on species-oriented restoration measures tailored to the current state of the species and the ecological and social conditions of its pilot region.

In addition to ecological and species-based considerations, the planning process of the restoration plans was supported by comprehensive geospatial analyses conducted during earlier phases of the ReCo project. These analyses identified areas of interest for ecological restoration through the interpretation and multifactor evaluation of historical landscapes, current land cover, and the potential to improve ecological connectivity of key habitats that are fundamental for the protection of the species. For the European bison, telemetry data provided additional insights into species preferences and behavior, which informed the proposed measures in the plan. For the European wildcat, telemetry data collection has recently started and will serve as a basis for deriving future knowledge. Expert knowledge played a key role in validating and refining the spatial results. To ensure the practical relevance of the identified areas of interest, local knowledge was integrated by considering factors such as land ownership, ongoing restoration efforts, and other regional specifics. This contextualization increased the feasibility and applicability of the proposed restoration measures.

Stakeholders were actively involved through workshops coordinated by the pilot partners. These sessions provided a space to review and collaboratively refine the draft plans. This participatory process strengthened the proposed workplans and helped establish the foundation for future cooperation in conservation efforts.

The following Local and Regional Restoration Plans reflect the combined outcomes of ecological analysis, stakeholder collaboration, and species expert knowledge. They provide a strategic framework for the conservation of the European bison and the European wildcat, aiming to maintain stable populations, protect genetic diversity, and improve habitat connectivity across the Central European Green Belt.

THAYATAL NATIONAL PARK & NATIONAL PARK PODYJÍ

EUROPEAN WILD CAT

Local Restoration Plan for the Recovery and Conservation of the European Wildcat (*Felis silvestris*) in the Thayatal-Podyjí Region

Authors:

Tomáš Dvořák, Julian Haider

Publisher:

ReCo Project Consortium (www.interreg-central.eu/projects/reco)

Publication developed as a part of the project “ReCo - Restoring degraded eco-systems along the Green Belt to improve and enhance biodiversity and ecological connectivity” (www.interreg-central.eu/projects/reco), supported by the Interreg CENTRAL EUROPE Programme with co-financing from the European Regional Development Fund.

Responsibility for the content of the publication lies solely with the Authors and can in no case be treated as a reflection of the position of the European Union.

The publication is free. Reproduction and quoting are allowed, provided that the source is acknowledged. However, the use or reproduction of photos and other materials for which the Publisher is not entitled to copyright requires the direct consent of the owner of the rights.

SUMMARY

The restoration plan outlines a comprehensive strategy to re-establish a viable European wildcat population in the Thayatal-Podyjí region, straddling Austria and the Czech Republic. Once extinct locally due to persecution, habitat loss, and hybridization with domestic cats, the species has recently been detected again through camera traps and genetic sampling. The region's mosaic of diverse forests and largely traditional cultural landscape, along with its protected status, offers an exceptional opportunity for long-term recovery.

The plan identifies the wildcat as both a flagship and umbrella species, whose conservation supports broader biodiversity and ecosystem resilience. Preceding activities have included monitoring, reintroductions, pond creation, and coppice forest restoration. Building on these foundations, the plan proposes five interconnected fields of action: coppice forests creation, aquatic habitat restoration, improving ecological connectivity via wildlife crossings and corridors, comprehensive monitoring with genetic safeguards against hybridization, and public engagement through education and stakeholder cooperation.

Priority areas for restoration include the national park core zones, stepping-stone biotopes, and potential expansion zones. A phased ten-year implementation (2026-2036) is envisioned: preparation and piloting (2026-27), expansion and consolidation (2028-30), and integration with evaluation (2031-36). Governance will be coordinated by both national parks, supported by a cross-border Wildcat Coordination Council comprising authorities, researchers, and NGOs. The estimated cost is €980,000, financed by EU programs, national biodiversity funds, and park budgets.

Monitoring will track wildcat populations alongside indicator groups such as amphibians, water insects, saproxylic beetles, and spiders, ensuring ecological effectiveness. Ultimately, the plan is not only about safeguarding a rare predator but about restoring a resilient, interconnected landscape, strengthening regional identity, and serving as a model for cross-border biodiversity conservation in Europe.

1. Focus

1.1. Introduction and objectives

The return of the European wildcat (*Felis silvestris*) to Central Europe is one of the most remarkable developments in European nature conservation in recent decades. Not long ago, it was considered extinct in Austria and much of the Czech Republic—driven out by habitat loss, direct persecution, and genetic mixing with domestic cats. Today, increasing genetically confirmed sightings indicate that the species is slowly but steadily recolonizing new habitats—including the areas of Thayatal National Park (Austria) and Podyjí National Park (Czech Republic). This development represents a historic opportunity—but also an ecological responsibility.

The aim of this restoration plan is to lay the foundation for the permanent return and establishment of the wildcat in the cross-border Thayatal-Podyjí landscape and simultaneously enhancing its spreading, recolonisation of former territories and potential reconnection with larger stable populations in Carpathians and Germany. The goal is not just to protect an endangered species, but to pursue a broader vision: the restoration of structured, functional landscapes that provide habitat for wildcats and many other species—while also strengthening nature awareness, biodiversity, and regional identity.

This plan serves as a strategic tool for authorities, national park administrations, municipalities, and stakeholders from research and practice. It outlines concrete actions, defines responsibilities, describes ecological targets, and shows ways in which the region can become a model area for integrated wildcat conservation.

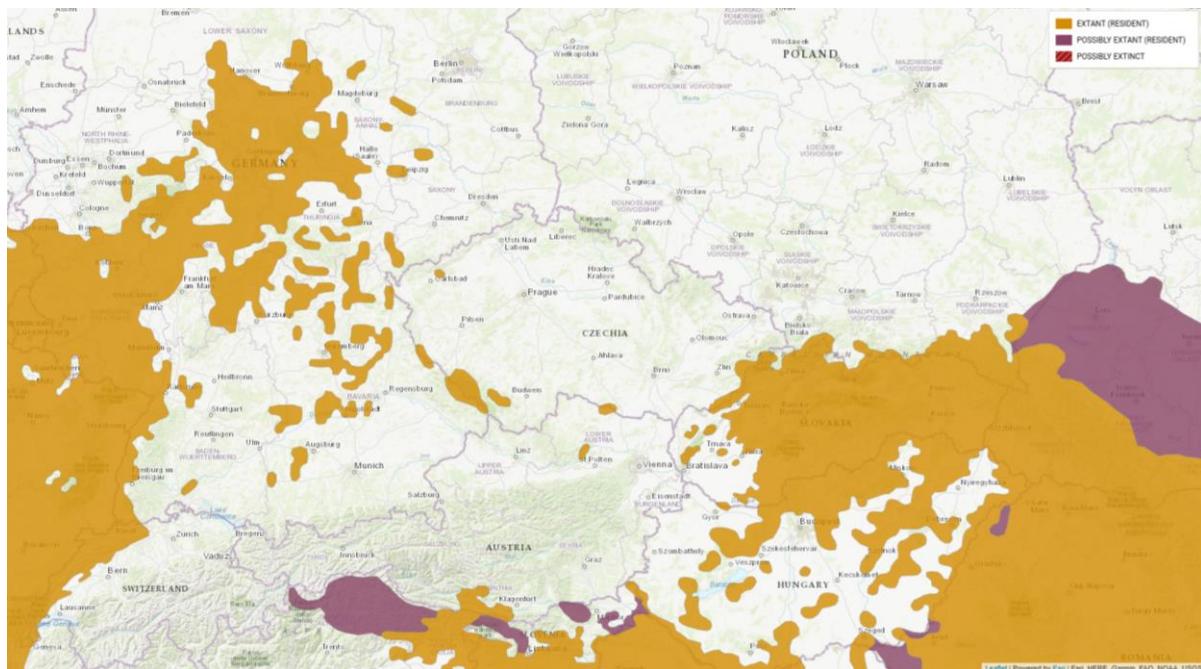


Fig. 1: Distribution of European Wild Cat (*Felis silvestris*) in Central Europe

1.2. Initial Situation and Regional Significance

The Thayatal-Podyjí region lies in the heart of Central Europe—where climatic, geological, and biogeographical influences from the east, south, and west converge. The narrow Dyje/Thaya breakthrough valley and the adjoining slopes and plateaus form a mosaic of ravine and hillside forests, near-natural alluvial forests, dry grasslands, traditional orchards, and small-structured agricultural landscapes. This landscape diversity, combined with relatively low urban sprawl and a high proportion of protected areas, makes the region an ecological hub of supraregional importance.

The two national parks—Thayatal (established 2000) and Podyjí (1991)—are the smallest of their kind in Austria and the Czech Republic, but also especially valuable. They are characterized by high conservation standards, long-standing experience in research and habitat management, and functional cross-border cooperation structures. Notably, the area was largely inaccessible to human interference for decades due to the "Iron Curtain." This historic isolation helped preserve large, near-natural forests outside larger mountain ranges—an exceptional case in Central Europe.

Despite this favorable starting point, wildcats have recently only been sporadically detected in the region—occasionally through camera traps, genetic traces, or observations. There is currently no evidence of a reproducing population in either Thayatal or Podyjí. Contributing factors include landscape fragmentation by roads, intensive land use around protected areas, and insufficient habitat connectivity to nearest populations. Hybridization risks with domestic cats further increase with habitat degradation.

This plan addresses these issues and develops a comprehensive package of measures for ecological restoration, genetic stabilization, and societal anchoring of the wildcat as a flagship species in the Thayatal-Podyjí region.

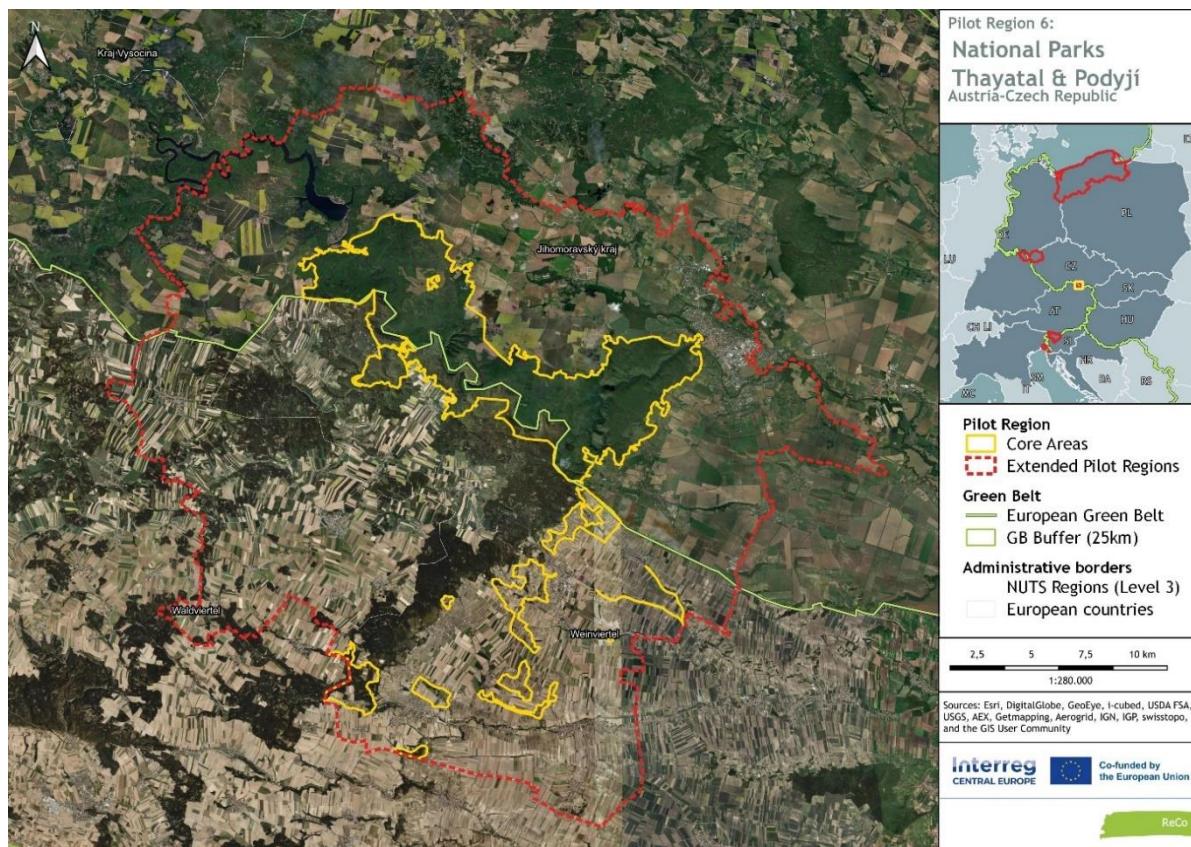


Fig. 2: Pilot region of National parks Thayatal and Podyjí

2. The European Wildcat as a Flagship and Target Species

The European wildcat is more than just a rare species—it is a living symbol of functioning, diverse, and near-natural forest landscapes. As a strictly protected species with high habitat requirements, it stands for many others that need similar conditions: structured forests, undisturbed retreats, transitional habitats, and intact landscape permeability.

Ecologically, the wildcat favors mosaic-like landscapes featuring a structurally rich mix of old forests with standing and fallen deadwood, bramble thickets, and, conversely, patches of light forests, forest edges, shrubs, and open areas. It relies on cover as well as a sufficient supply of prey—mainly small mammals, but also amphibians, juvenile birds, or insects.

A major risk to the species is genetic mixing with feral domestic cats. Hybridization can lead to the irreversible loss of the wildcat's genetic integrity. Road traffic, intensive forestry without regard for habitat structures, and a lack of crossing opportunities are additional threats to its survival in Central Europe.

In the context of the Thayatal-Podyjí area, the wildcat has special significance: As a returnee to the national park area, it embodies the vision of a regenerated landscape. At the same time, it fulfills the role of a so-called "umbrella species" in conservation: protecting its habitat benefits many other—often lesser-known—species. Thus, wildcat protection always means protecting the whole ecosystem.

Its return makes the Thayatal-Podyjí area a key link in the European wildcat network—between the Carpathians, the Bohemian Forest, the Wachau, and the Alps. The re-establishment and stabilization of a self-sustaining population in the region could thus be considered a milestone in species conservation on a European scale.

Fig. 3: European Wild Cat (*Felis silvestris*)

3. Preceeding restoration activities

In recent years, significant groundwork has been laid in the Thayatal-Podyjí region to support and monitor the wildcat's return. In Austria, the focus was initially on research and observation of this strictly protected species. Using camera traps and lure-stick methods, the first signs of transient individuals were documented. Of particular note is the genetic confirmation of three female wildcats in the region, including one with proven kinship to the Wachau population. This not only indicates regional partly functional migration corridors but also underscores the region's ecological importance as a connector between populations.

A pilot reintroduction project was also carried out: Two genetically tested individuals from a French wildlife center were selected and prepared for release in a specially constructed acclimatization enclosure in Thayatal National Park. After a short adaptation period, the wildcats were released into the wild. The project is accompanied by the testing of two telemetry systems to analyze spatial behavior in real time and over extended periods.

Also the management of dry meadows in the National Park area was part of the programme to enhance landscape connectivity by maintaining stepping stone biotopes.

On the Czech side, extensive habitat restoration and ecological enhancement measures have been implemented. Particularly noteworthy is the creation of a pond system in a formerly degraded wetland east of the village of Hnanice. Through earthworks adapted to groundwater levels and terrain structures, three structurally rich still waters were created and adjacent wetland restored. These now provide new habitats for amphibians, insects, and small mammals—while also improving landscape permeability, a key factor for wildcats reliant on cover and prey diversity along their migration routes.

Another key element was the revival of traditional coppice management in Podyjí National Park. Since 2015, mosaic-like forests with varied age phases, light conditions, and structural diversity have emerged near the eastern edge of continuous forests area. These measures have quickly proven beneficial for biodiversity and created habitats potentially attractive to wildcats. In combination with monitoring—especially through camera traps and genetic sampling—a data-driven understanding of landscape use and suitability is developing, forming the basis for targeted actions.

4. Fields of Action and Packages of Measures

The sustainable establishment of the wildcat in the Thayatal-Podyjí region requires a combination of interlocking measures. These are tailored to the specific needs of the species and also take into account the structural characteristics of the region.

4.1. Habitat Management and Development of Coppice Forests

The current condition of many forest areas—characterized by dense, structurally poor high forests—offers only limited suitable habitat for wildcats. Their need for cover, hunting opportunities, and retreat areas can be far better met by structurally and age diverse coppice forests. Therefore, the restoration of traditional coppice forest forms in the cultural landscape should be actively promoted.

Plans call for the creation of light forest areas with varying age stages, old trees, deadwood, and species-rich undergrowth. Oaks, hornbeams, and other site-typical deciduous trees should be specifically supported. This development should be targeted in forest areas adjacent to the national parks, aiming for a mosaic of various successional stages. The goal is to establish at least 30 hectares of such structurally rich forests by 2036. Coppices may also offer economic benefits, particularly for small forest

owners, which may encourage their willingness to actively participate in their establishment. In a changing climate with increasingly unpredictable threats (droughts, storms, pests), low forest systems with shorter rotation periods can be advantageous. The harvested wood may offset restoration costs and allow for low-effort, low-cost harvesting of fast-regrowing biomass.

Within the core areas of national park forests, process protection—allowing natural succession to shape forest structure—plays a key role in long-term habitat stewardship.

Fig.4. Restoration of structurally rich coppice forests near Hnanice village, Czech Republic

4.2. Restoration of Aquatic Habitats

Wetlands and ponds play a central role in the trophic base of the ecosystem and act as ecological stepping stones. Restoring these areas enhances the availability of prey such as amphibians and insects, which are important food sources for wildcats.

Building on experiences in Podyjí National Park and Thayatal National Park, additional ponds and wetlands with varied shoreline designs should be restored—including shallow zones, reed margins, and tree strips. They should be built along small streams and in suitable terrain depressions. Preferably in places, where they will be connected to forests, linear vegetation or other suitable habitats enhancing their function as stepping stones and migration corridors. The goal is to create natural water regimes with seasonal dynamics that benefit many species. Long-term maintenance and periodic sediment removal will ensure the ecological value of these water bodies and reinforce their function as connecting elements within the landscape.

Fig. 5: Restored wetland with three ponds near Hnanice village, Czech Republic

4.3. Improving Ecological Connectivity

One of the main barriers to wildcat dispersal is landscape fragmentation caused by roads, settlements, and intensively used agricultural land. Therefore, creating functional corridors is a central concern of this plan. Some studies on this topic have already been conducted and the results should be part of any further planning or actions.

At critical points—such as along the heavily trafficked roads around Znojmo—wildlife crossings should be built or existing bridges ecologically upgraded. Additionally, linear corridor structures will be created using hedge planting, field margin strips, and structurally rich forest edges. Small-scale extensification measures along dispersal routes—such as through agri-environmental agreements—can also help establish a coherent ecological infrastructure.

4.4. Monitoring and Genetic Management

To assess the success of the measures, a comprehensive, adaptive monitoring program should be conducted. It should combine camera traps, telemetry, and genetic analysis.

The existing camera network, established during the ReCo project and during prior projects, could be expanded and locally intensified. At the same time, hair and scat samples will be systematically collected and analyzed in specialized laboratories. In addition to detecting individual animals, the focus should be on assessing genetic purity—particularly to detect early signs of hybridization with domestic cats.

4.5. Environmental Education and Stakeholder Involvement

Long-term species conservation is only possible with broad societal support. Therefore, targeted environmental education and public engagement initiatives should be carried out.

Both national parks could host thematic action weeks, interactive tours, lectures, and exhibitions to raise awareness of the wildcat and generate enthusiasm for its return. Schools could be provided with custom teaching materials and involved in citizen science projects. Information points along hiking trails, digital platforms, and participatory formats such as adoption programs will offer low-barrier engagement opportunities for diverse audiences.

Equally important is dialogue with land users—particularly forestry and agricultural enterprises—to jointly develop and stabilize voluntary conservation measures.

5. Areas of Interest for Restoration

The Thayatal-Podyjí region features numerous potentially suitable habitats for the wildcat. However, the success of the measures depends on targeted investment in areas where high habitat quality, low disturbance, and connectivity potential converge. The following are the most important action areas for concentrated restoration efforts:

5.1. Core Habitats in Thayatal and Podyjí National Parks

The extensive, largely unfragmented deciduous forests in both national parks form the ecological heart of the project. They provide stable conditions with low land-use pressure, a variety of near-natural forest types, and important retreat areas in ravine and slope forests.

A central goal in these core zones is the qualitative enhancement of existing forests through process protection and the allowance of natural succession. At the same time, low-disturbance zones should be designated, and tourism management concepts adjusted to secure potential breeding areas. In Podyjí National Park edge zones and adjacent areas, restoration of coppice forests, promotion of old-growth islands, and development of species-rich forest edges should be prioritized.

5.2. Stepping Stone Biotopes and Connection Corridors

Outside the national parks, numerous small forest islands, copses, extensively used meadows, and linear structures (e.g., railways, stream valleys) can serve as so-called stepping stone biotopes. These are essential for further cat spreading and promoting genetic exchange between subpopulations.

Two central corridor axes are in focus:

- The connection from Hardegg via Langau to the Waldviertel and Dobersberg, which is currently interrupted by agricultural land and roads.
- The cross-border axis between Znojmo, the Jevišovka floodplain, and the Jihlava region, which could connect to the northeastern wildcat population.

In these areas, targeted plantings, small ponds and wetlands restoration actions, conservation contracts, and crossing aids would ensure safe movement and facilitate the colonization of new territories.

5.3. Expansion Areas with High Potential

In addition to core and connection areas, there are further promising zones that could be developed as new habitats in the medium term. The area west of Vranov nad Dyjí, and north of Šumnná and Lesná is particularly promising due to forested slopes, extensively used land, and existing biotope structures.

The challenges here include intensive agriculture, forestry and infrastructure barriers. Therefore, combined measures are needed: landscape structure enhancement, and awareness-raising among local residents, stakeholders and authorities. These expansion areas should serve not only wildcats but also other endangered species as refuges and development zones.

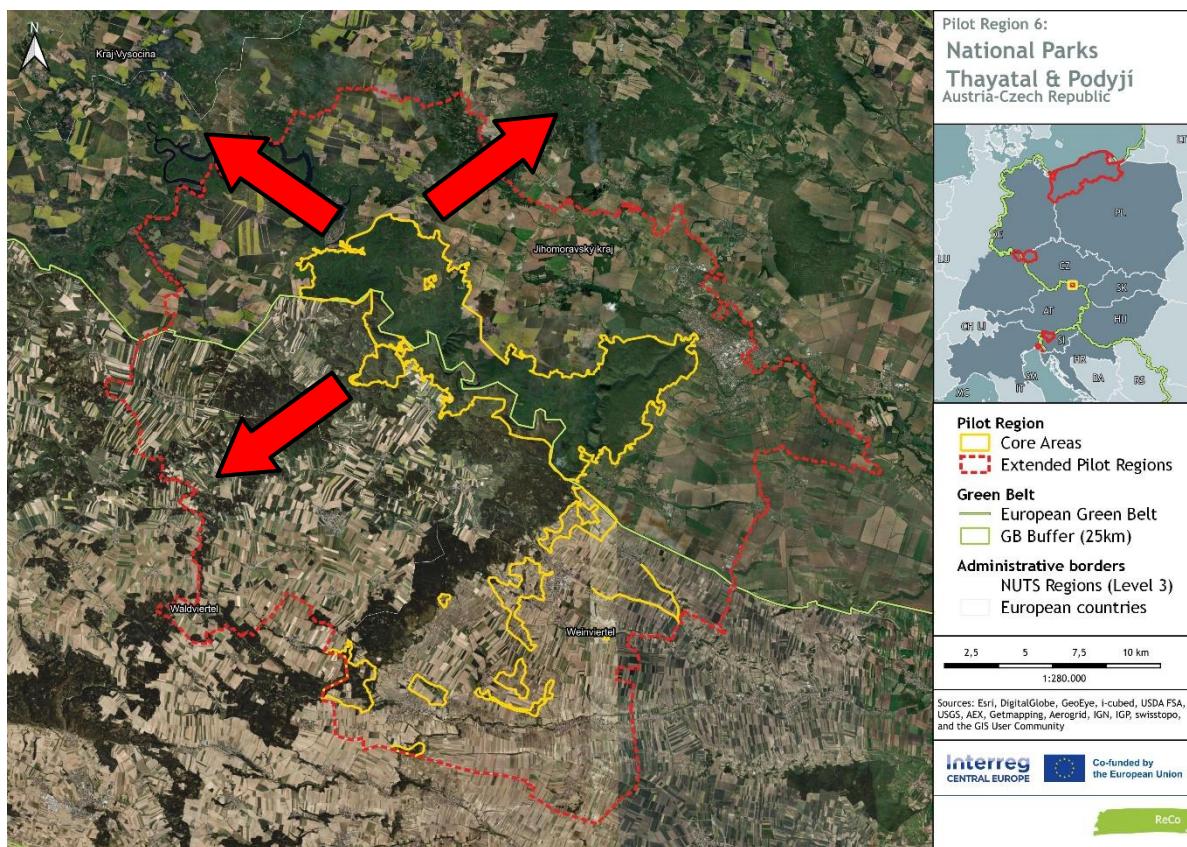


Fig 6: Red arrows showing potential expansion areas and spreading routes from the core area of both national parks

6. Implementation Strategy

The implementation of the restoration plan could proceed in several coordinated steps that build on one another and aim to achieve long-term impact. Particular importance is placed on close coordination among stakeholders, transparent communication, and adaptive management.

6.1. Timeline and Milestones

The program could be implemented over a ten-year period (2026-2036) and divided into three phases. The activities focus on awareness raising, advisory services, restoration examples and monitoring.

Phase 1 (2026-2027): Preparation and Piloting

In the initial phase, the main goal would be to secure funding and establish cooperation with relevant stakeholders. Public information campaigns, educational workshops, field excursions and stakeholder meetings should be organized to raise awareness of the European wildcat and its ecological importance. Pilot activities would include the development of educational materials, the expansion of monitoring, and the establishment of first advisory formats for land users. Planning of additional wetland restoration and further forest conversion within Podyjí National Park will be carried out.

Phase 2 (2028-2030): Expansion and Consolidation

The second phase could focus on broadening the educational and advisory activities across the region. Successful formats from the pilot phase would be expanded, including school programs, stakeholder trainings, and cross-border exchange activities. Monitoring activities were to be intensified to collect reliable data on wildcat presence and potential corridors. Special emphasis should be placed on supporting municipalities, landowners, and local communities in developing their own conservation initiatives, based on the knowledge and advice provided by the national parks. In this phase also further restoration measures such as the removal of drainage systems in the area of Lake Fugnitz, which is an old lowland moor in the area of Thayatal National Park will be performed. On the Czech side, we will focus on creating new small wetlands and restoring coppice within the National Park, as well as scaling up the most successful restoration and habitat-enhancement measures previously tested in core project areas by encouraging stakeholders to implement them at additional strategic locations such as Vranov nad Dyjí and Šumná. These sites are highly important as they form ecological gateways, opening potential migration corridors for the European wildcat towards the west and north, thereby strengthening the species' connectivity with other Central European populations. Measures will include promoting the creation of wildlife crossings across busy transport routes to ensure safe passage and reduce road mortality, along with supporting coppicing and wetland restoration.

Phase 3 (2031-2036): Integration and Evaluation

The final phase should concentrate on evaluating the effectiveness of the educational and advisory measures as well as the monitoring results. Intensive monitoring of biodiversity in restored areas and results of this monitoring will be evaluated and published. Lessons learned should be summarized and integrated into regional planning and awareness strategies. The results could be communicated broadly to ensure long-term visibility and political support. Continued education, information, and stakeholder dialogue would secure the sustainability of the efforts beyond the project period. To secure continuity, the results will be embedded in long-term funding frameworks, including EU programs such as LIFE and the Common Agricultural Policy (CAP), alongside national and regional mechanisms. Public outreach will continue through targeted campaigns and stakeholder engagement, fostering community support and cross-sector

cooperation. These efforts will help maintain restored habitats, protect migration corridors, and ensure the European wildcat remains a lasting part of the Podyjí-Thayatal landscape.

6.2. Coordination and Governance

The main focus lies on facilitating exchange between stakeholders, providing professional advice, and supporting knowledge transfer. Coordination activities should include organizing workshops, stakeholder meetings, and educational events as well as maintaining communication between relevant actors. This ensures that knowledge and recommendations are available for local authorities, land users, and decision-makers, without establishing additional complex structures. Strengthening of the existing cross-border cooperation between the two parks will be carried out.

6.3. Financing and Use of Funds

The financial resources of the plan should primarily be directed towards:

- monitoring and research to provide a scientific basis for decision-making,
- advisory services for land users, municipalities, and regional stakeholders,
- environmental education and public outreach activities,
- and basic project coordination to ensure continuity.

The emphasis is on education, awareness-raising, and consultation. Instead of direct habitat restoration or infrastructure investments, the plan supports knowledge transfer, communication, and capacity building. This approach enables local actors to implement measures independently, with the professional support and guidance of the National Parks. Nevertheless, some restoration activities will be performed within Podyjí National Park. These actions will serve as examples of good practice, showing how it could work and encouraging relevant stakeholders to carry out their own actions. Necessary funds can be obtained from EU programs (LIFE, INTERREG, CAP environmental measures), national biodiversity funds, project-related grants from foundations or contributions from the national parks' own budgets.

7. Monitoring

Monitoring is a central part of the restoration plan, designed to assess the effectiveness of all measures outlined in Chapter 6 over the 10-year implementation period. It focuses on evaluating whether ecological interventions, habitat restoration, and educational initiatives achieve their intended outcomes, and provides the basis for adaptive management to ensure lasting success for the European wildcat and the broader ecosystem.

In the first phase (2026-2027: Preparation and Piloting), monitoring will primarily establish baseline conditions and test monitoring protocols. Ecological monitoring will document initial wildcat presence, habitat quality in core areas, and the condition of pilot restoration sites such as coppice forests and wetlands. At the same time, the success of educational and stakeholder engagement activities will be assessed through surveys, participation rates, and feedback from workshops, school programs, and stakeholder meetings. Pilot monitoring methods, including camera traps, telemetry, and genetic sampling, will be trialed to ensure they are suitable for tracking wildcat movement, habitat use, and early signs of population establishment. This phase provides the first feedback loop to refine both ecological interventions and public engagement formats.

During the second phase (2028-2030: Expansion and Consolidation), monitoring will focus on evaluating the broader implementation of measures across the region. Ecological monitoring will assess the effects of habitat restoration and connectivity improvements, tracking wildcat use of restored forests, wetlands, and

corridor structures, as well as the presence of indicator species such as amphibians, birds, and insects in restored wetlands and coppice forest within the Podyjí National Park. Amphibians are a crucial monitored group because of their charismatic appearance, ease of identification, and well-known ecological needs. They serve as flagship species for aquatic habitat management. Amphibians are best monitored in spring during breeding, when large numbers gather at suitable aquatic habitats. Monitoring methods include individual captures, direct observation, or use of aquatic traps. Breeding success must also be evaluated, as ponds that don't support larval development are of limited value and may even act as ecological traps. It is also advisable to monitor aquatic insect groups. Dragonflies and water beetles are particularly conspicuous and easy to monitor. They can be sampled using traps (for beetles and dragonfly larvae) or individual collection. The presence of specific dragonfly or beetle species can indicate water regime and quality. Water plankton composition provides insights into the food web structure. The presence of fish, especially invasive species like pumpkinseed, is undesirable, as they can disrupt the food web and eliminate other aquatic life forms.

Coppice restoration is a relatively new management approach, and its effects on different animal and plant groups are still being studied. The value of forest management practices that increase light availability and age diversity is well documented through studies on saproxylic beetles, many of which depend on sunlit wood of specific thickness and decay stages. Interestingly, newly cut coppices are most attractive to saproxylic beetles immediately after felling due to the abundance of sun-exposed fresh deadwood, which attracts beetles from a wide area. The most common sampling method is flight interception traps. Spider studies have also shown increased biodiversity and especially functional diversity in newly created coppices, making spiders a promising group for monitoring. They can be collected through sweeping, beating vegetation, or pitfall traps. Currently, studies are underway to assess the impact of coppices on bird populations.

Genetic sampling will continue to monitor population integrity and detect potential hybridization with domestic cats. Success of educational and advisory measures will be evaluated by the extent and quality of engagement: the number of schools and communities reached, participation in citizen science projects, adoption of voluntary conservation measures by landowners, and cross-border cooperation activities. This phase provides a critical assessment of whether initial pilot measures are being effectively scaled up and whether knowledge transfer and stakeholder engagement are producing tangible conservation results.

In the final phase (2031-2036: Integration and Evaluation), monitoring will consolidate data from all ecological and educational activities to evaluate overall success. The key objectives are to determine whether wildcats are establishing in core habitats, corridors, and expansion areas, whether restored habitats are functioning as intended, and whether biodiversity indicators show measurable improvement. Equally important is the evaluation of educational and stakeholder engagement efforts: assessing the long-term retention of knowledge, the implementation of local conservation initiatives, and the sustainability of cross-border collaboration. Lessons learned from this phase will inform regional planning, public awareness strategies, and future conservation projects, ensuring that both ecological and social outcomes continue to support wildcat conservation beyond the project period.

Overall, monitoring is designed to be fully integrated with the phased 10-year plan. By linking ecological and educational measures, the program provides a comprehensive view of project success, allowing adaptive management that responds to both biological outcomes and societal engagement. This approach ensures that restoration efforts lead not only to habitat improvement and species recolonization but also to lasting public support and participation in wildcat conservation throughout the Thayatal-Podyjí region.

8. Conclusion and Recommendations

Recommendations for decision-makers and partner institutions:

The plan promotes species protection, landscape stewardship, and sustainable regional development. Key recommendations for decision-makers and partner institutions include:

- Consider the plan as a guiding framework for regional development strategies in Austria and the Czech Republic
- Foster political support and institutional embedding through the coordination council
- Align the plan with national biodiversity strategies (e.g., AT Biodiversity Strategy 2030+, CZ Strategy for the Protection of Biological Diversity)
- Incorporate wildcat conservation into educational programs and regional tourism initiatives to build societal awareness

The plan serves as a starting point: its implementation aims not only to secure the survival of the wildcat but also to enhance nature awareness in the region and lay the groundwork for a new generation of cross-border conservation policy.

While no formal endorsement has been issued yet, the Letter of Intent and ongoing engagement with stakeholders demonstrate broad regional support. The implementation process is structured in three phases (as outlined in PR6):

1. **Initial Phase:** Establish advisory structures, strengthen cooperation, and expand monitoring activities.
2. **Second Phase:** Consolidate stakeholder involvement, deepen cross-border collaboration, and support municipalities and landowners in developing concrete measures.
3. **Final Phase:** Evaluate cumulative impacts, integrate findings into regional planning, and secure long-term political and social anchoring of wildcat conservation in the region.

The ReCo project's (www.interreg-central.eu/projects/reco) consortium consist of:

- Bavarian Branch of Friends of the Earth Germany (Lead Partner, Germany),
- Hof county branch of Friends of the Earth Germany (Germany),
- DOPPS - BirdLife Slovenia (Slovenia),
- Ametyst, NGO (Czech Republic),
- Federacja Zielonych "GAJA", NGO (Poland),
- WWF Italy (Italy),
- Thayatal National Park (Austria),
- University of Vienna (Austria),
- Landscape Research Institute (Czech Republic),
- BSC - Business support organisation ltd., Kranj (Slovenia),
- Podyji National Park Administration (Czech Republic),
- Ministry of the Environment of the Czech Republic (Czech Republic).