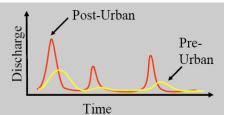


CONE

Adaptation and mitigation strategies for cities




CONE - 1st Workshop - Training of trainers
ONLINE | 3 of March 2025

Presenter: Magdalena Gajewska

#### HOW URBANISATION AFFECTS STORMWATER RUNOFF?

evapotranspiration runoff infiltration underground outflow





# FLOODS in Gdańsku

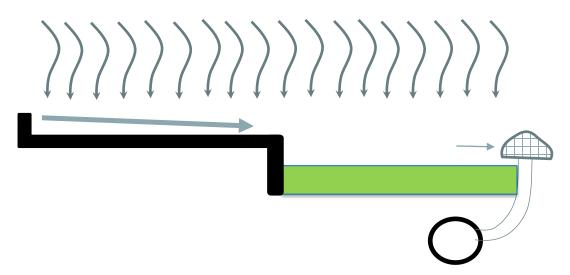


2001 10 h -> 130 mm

2016 16 h -> 160 mm






### Changes in the approach to stormwater management

Rainwater drainage system (design recommendations), GDANSK but .....:

- 1. retaining 30–60 mm of rainfall in urban green areas
- 2. rainwater storage tanks
- 3. urban rainwater drainage system

# **Current approach in Gdańsk City**

**Integrating green infrastructure for water retention** before the storm drain system since 2018 volume 200 000m³ of precipitation in rain gardens and bioswales etc, REQUIRED 30mm to be keep in green or 60mm if there is no grey system



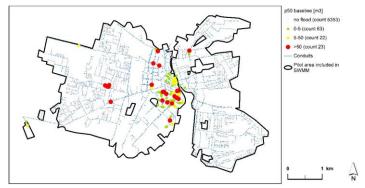


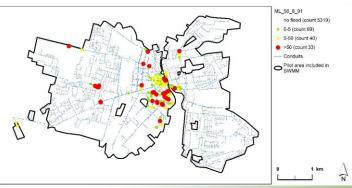


### Adaptation of existing urban space

**Technical solutions for managing stormwater from:** 

- roofs relatively good quality stormwater
- parking lots e.g. petroleum products
- streets heavily polluted runoff, e.g. heavy metals
   Possible to implement in existing urban space:
- residential areas
- old town
- main intersections in the city centre


# Implementation of EWL in Słupsk NOAH project


#### Extreme Weather Layer (EWL) method enables various types of flood risk visualization

flood risk classes based of the flooding flow rate:

| Duahahilitu. | Scenario          | Classes - total flooding [m3] |      |     |
|--------------|-------------------|-------------------------------|------|-----|
| Probability  |                   | 0-1                           | 1-10 | >10 |
|              | Current           | 63                            | 22   | 24  |
|              | RCP 4.5 2051-2060 | 60                            | 26   | 26  |
| 50%          | RCP 4.5 2091-2100 | 68                            | 27   | 29  |
|              | RCP 8.5 2051-2060 | 70                            | 32   | 30  |
|              | RCP 8.5 2091-2100 | 69                            | 40   | 34  |
| 5%           | Current           | 89                            | 46   | 51  |
|              | RCP 4.5 2051-2060 | 91                            | 47   | 53  |
|              | RCP 4.5 2091-2100 | 94                            | 45   | 55  |
|              | RCP 8.5 2051-2060 | 103                           | 43   | 60  |
|              | RCP 8.5 2091-2100 | 102                           | 42   | 64  |

- Identification of flood-prone locations
- Determination of flood risk classes
- Selection of areas for NBS implementation







# Holistic approach to stormwater management and treatment NOAH PROJECT

### **Słupsk pilot area – NOAH project activities:**







✓ Development of Extreme Weather Layer – a spatial planning method as a part of adaptation to climate change strategy in the city of Słupsk

✓ Stormwater runoff quality monitoring



Science of The Total Environment
Volume 842, 10 October 2022, 156751



Extreme weather layer method for implementation of nature-based solutions for climate adaptation: Case study Słupsk

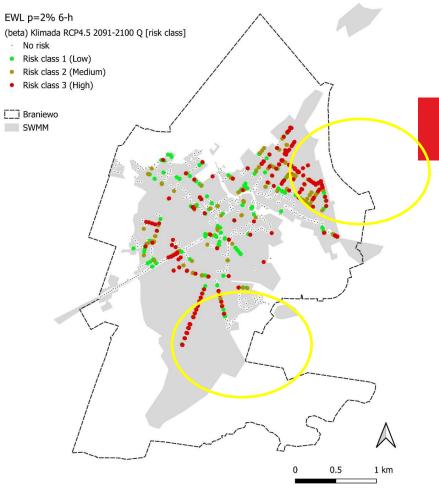
Karolina Fitobór <sup>a</sup>, Rafał Ulańczyk, <sup>b</sup>, Katarzyna Kołecka <sup>a</sup> , ② , ③ , Klara Ramm. <sup>c</sup>,

Iwona Włodarek, <sup>c</sup>, Piotr Zima, <sup>a</sup>, Dominika Kalinowska <sup>a</sup>, Paweł Wielgat <sup>a</sup>, Matgorzata Mikulska, <sup>d</sup>,

Danuta Antończyk, <sup>d</sup>, Krzysztof Krzaczkowski <sup>d</sup>, Remigiusz Łyszyk, <sup>d</sup>, Magdalena Gajewska, <sup>a</sup>

|             |                   | Decrease in the flooding volume [%] |                                    |  |
|-------------|-------------------|-------------------------------------|------------------------------------|--|
| Probability | Scenario          | Total flooding in<br>Słupsk         | Overflow to<br>the Słupia<br>River |  |
|             | Current           | 79                                  | 100                                |  |
| 50%         | RCP 4.5 2051-2060 | 76                                  | 100                                |  |
|             | RCP 4.5 2091-2100 | 73                                  | 100                                |  |
|             | RCP 8.5 2051-2060 | 71                                  | 100                                |  |
|             | RCP 8.5 2091-2100 | 67                                  | 100                                |  |
| 5%          | Current           | 57                                  | 84                                 |  |
|             | RCP 4.5 2051-2060 | 55                                  | 79                                 |  |
|             | RCP 4.5 2091-2100 | 54                                  | 75                                 |  |
|             | RCP 8.5 2051-2060 | 52                                  | 69                                 |  |
|             | RCP 8.5 2091-2100 | 50                                  | 60                                 |  |








### **EWL**

### FUTURE TRENDS

RCP 4.5Klimadahorizon 2091-2100



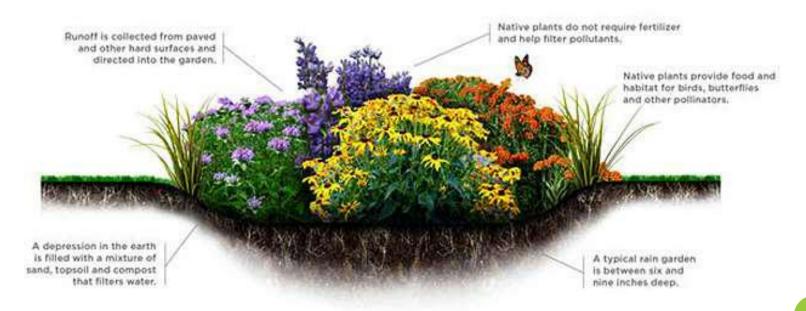








## Adaptation of existing urban space


### **Benefits:**

- Prevention of local flash floods
- Improvement of microclimate
- Mitigation of the urban heat island effect
- Increase in biodiversity
- Tailored approach to the specific catchment area, including technical solutions to improve the quality of stormwater



## What is a Rain Garden?

Nature's Water Filter: Rain-gardens are shallow landscaped depressions that capture, clean and absorb stormwater runoff from roofs, parking lots and roads.





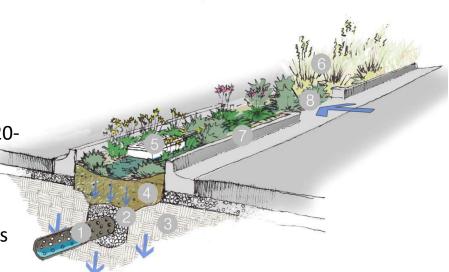


### https://www.urbangreenup.eu/solutionsnn/water-interventions/rain-gardens.kl

A rain garden is a bioretention shallow basin designed to collect, store, filter andtreat water runoff. To optimise its functions, it must include a porous soilmixture, native vegetation and some hyperaccumulator plants, capable of phytoremediation.






### CONSTRUCTION

### The rain gardens are built with:

- A perforated pipe connecting to basin or stream outlet. (1)
- Gravel pipe bed. (2)
- Native soil. (3)
- Soil mixture of 50% sand, 20-30% compost and 20-30% topsoil. Sand
- creates a draining soil. (4)
- Overflow control structure. (5)
- Vegetation. Native plants with deep root systems that absorb runoff and
- pollutants. (6)

By URBAN GreenUp

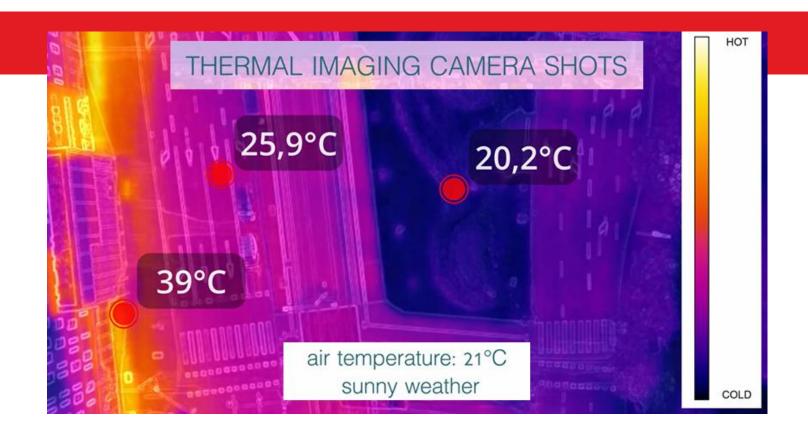
- Curb and gutter. (7)
- Curb cut to allow water to enter the rain garden. (8)



# The Development of the Rain Garden Concept








### How?

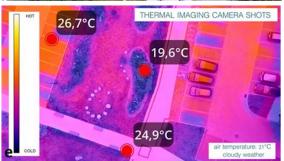













### Rain Gardens in Gdańsku











# Results for biodiversity - existing rain gardens

| Rain garden               | 3 Maja St.                                                                                                                                                       | O'Rourke Square                                                                                                                     | eMOCja Center                                                                                                                                          | Lastadia st.                                                                                                                                                 | Kaczeńce                                                                                                                                                           |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dominant plant<br>species | <ul> <li>Iris pseudacous</li> <li>Glyceria maxima</li> <li>Phalaris         arundinacea</li> <li>Acorus calamus</li> <li>Phragmites         australis</li> </ul> | <ul> <li>Iris sibirica</li> <li>Hemerocaliss</li> <li>Anemone hybrid</li> <li>Hosta sieboldiana</li> <li>Darmera peltata</li> </ul> | <ul> <li>Deschampsia caespitose</li> <li>Lysimachia nummularia</li> <li>Hemerocaliss</li> <li>Myosotis scorpioides</li> <li>Glyceria maxima</li> </ul> | <ul> <li>Lysimachia nummularia</li> <li>Iris sibirica</li> <li>Deschampsia caespitose</li> <li>Carex muskingumensis</li> <li>Myosotis scorpioides</li> </ul> | <ul> <li>Phragmites         australis</li> <li>Phragmites         humilis</li> <li>Rosa `Rugby`</li> <li>Glyceria         maxima</li> <li>Iris sibirica</li> </ul> |
| Total species number (S)  | 41                                                                                                                                                               | 34                                                                                                                                  | 25                                                                                                                                                     | 47                                                                                                                                                           | 34                                                                                                                                                                 |
| Total plant number (N)    | 4654                                                                                                                                                             | 3913                                                                                                                                | 783                                                                                                                                                    | 4107                                                                                                                                                         | 1248                                                                                                                                                               |

| Dain anndan     | Shannon Evennes index | Shannon Diversity index |
|-----------------|-----------------------|-------------------------|
| Rain garden     | (D)                   | (H)                     |
| 3 Maja St.      | 0.837                 | 3.110                   |
| O'Rourke Square | 0.909                 | 3.205                   |
| eMOCja Center   | 0.963                 | 3.100                   |
| Lastadia st.    | 0.943                 | 3.631                   |
| Kaczeńce        | 0.929                 | 3.275                   |

<u>usually 1.5 - 3.5</u>.



### Gdeńsk Tech – URL 9, NICE H2020, rain garden 2.0



| Ecosystem services |            |                                                     |            |  |
|--------------------|------------|-----------------------------------------------------|------------|--|
| Provisioning       | Regulating | Cultural                                            | Supporting |  |
| $\Rightarrow$      | \$\$       | $\triangle \triangle \triangle \triangle \triangle$ | ***        |  |















Connection to Drenage system

GDANSK



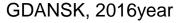











# **Technical aspects - inlets**

# Enabling rainwater to flow into rain gardens, for example by:

- Concrete channels
- Drainage curbs
- Lower curbs
- Lower pavement



**GDANSK** 







Rain garden system of 1.6 ha on Stogi Stryjewskiego, Wrzosy and Skiba - most likely the largest system in Europe

















# **Technical aspects - inlets**



GDANSK, 2022

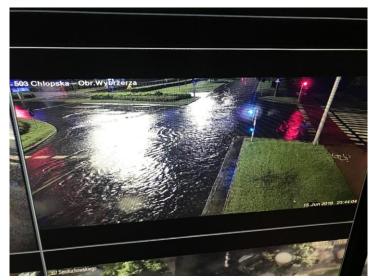






# **Technical aspects -overflow**






#### STREET AND ROAD DESIGN IS STILL A PROBLEM





Gdańsk, street Peasant / Rot. Wybrzeże, 15/06/2019 at 23.44 III degree heavy rain, Gdańsk Brzeźno Station 21.7 mm in 30 minutes







# **Technical aspects - inlets**









### **ROAD**, rainwater retention-pokets

















WROCŁAW, POLAND Street reconstruction towards rainwater retention and shadow







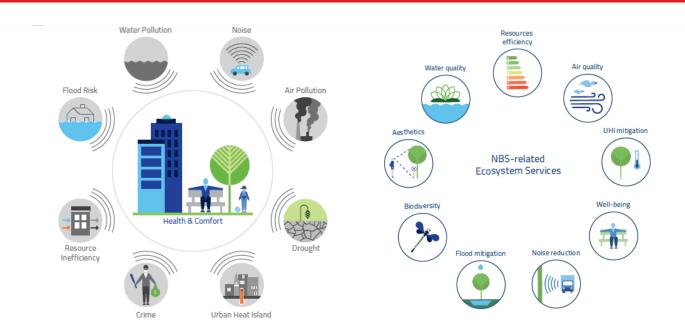




#### **BEFORE PIPE**












### Idea is to support as many as possible benefits

#### Modern storm water system with green infrastructure (NBS



# POLITECHNIKA GDAŃSKA



#### **CONCLUSIONS**

#### **Summing up:**

Integrated Urban Water Management ( IUWM)- wastwater, rainwater, indastrial ww, others .....reuse,

- ✓ Treatment of waste not longer single purpose BUT multifunctional with manufacturing of product: water, N, P, K, soil conditioner (compost, humic substances), heavy metals
- ✓ Closing and reconnecting loop, direct or indirect reusue
- ✓ Resilient, robust and flexible as well as attractive
- ✓ Treatment in place with as many as possible ecosystem service
- ✓ A lot of has been done so far but still there is a lot of possibilities and challenges Nature Based Solutions meet these criteria



### Rain gardens exaples in Gdańsk

3 maja:

https://www.youtube.com/watch?v=sICzWUGgZ-w

Zielony południk:

https://www.youtube.com/watch?v=BPEZBHEz2RU

Stogi:

https://www.youtube.com/watch?v=7bPUNOn3BCc

Lastadia:

https://www.youtube.com/watch?v=Z2Jv7DPYPh0&t=11s

Plan Biskupa O'Rourke:

https://www.youtube.com/watch?v=sDbKg2rPw1Y



# Thank you









Co-funded by the European Union

CONE